

Young Scientist Forum Rencontres de Moriond–EW March 2010

Search for the Higgs boson in $H \rightarrow W W^* \rightarrow lvlv$ decays

Davide Gerbaudo Princeton University

on behalf of the DØ collaboration

- Motivation
- Selection
- Multivariate Discriminant
- Limit

Motivation

BR(H)

This analysis: 5.4/fb $\sigma(gg \to H)=1.2-0.2$ pb (depending on m_H) \to potentially O(1000) Higgs produced. For a heavy Higgs (m_H>2M_W) the main decay channel is H \to WW

hadronic W

W₂

Consider the cases where both W's decay leptonically, leading to **ee**, **e** μ , or $\mu\mu$ with missing energy

Final state with two high p_T leptons + missing energy: very clear signature

Event selection

Then apply further cuts to reduce the backgrounds

Final discriminant

Use a Neural Network (inputs: p₊, angles, M, MET, etc.).

Make sure that all of the variables are properly modeled, and train one NN for each value of the Higgs mass being considered.

If there were a Higgs signal, it would be visible

No excess \rightarrow set limits...

Limit setting

Report the limit at 95% CL that the data analyzed is not compatible with the SM prediction for Higgs production.

Take into account the following systematic uncertainties:

- theoretical cross sections
- lepton momentum calibration
- jet reconstruction efficiency and JES
- modeling of the p_{T} of H, WW, Z
- modeling of the multijet background

• ...

Phys.Rev.Lett. 104, 061804

Conclusion

- Search for the SM Higgs at DØ in the channel H \rightarrow WW $\rightarrow lvlv$ has been presented
- The combined CDF+DØ result provided the first exclusion of the Higgs boson at a hadron collider.
- Using L=5.4/fb, expect to double the analyzed dataset by the end of 2011, and to further improve our analysis techniques → Stay tuned!

Thank you!

Moriond-EWK 2010

Backup

Backgrounds

There are SM processes that can lead to the same dilepton+MET signature

- intrinsic background (same final state)
- instrumental background (similar f.s.)

A lepton with poorly measured p_{τ} can mimic missing energy

Jets can be reconstructed as electrons (early showering, conversion)

Backgrounds considered:

- γ/Z (+jets)
- W (+jets)
- diboson (WW, WZ, ZZ)
- top quark pair
- multijet

Alpgen

Pythia

Data

Limits setting

Test the background-only (B) and the signal + background (S+B) hypoteses using a Profile Likely Ratio test, as implemented in COLLIE (COnfidence Level Limit Evaluator).

Take into account the following systematic uncertainties:

- theoretical cross sections
- lepton momentum calibration
- jet reconstruction efficiency and JES
- modeling of the pT of H, WW, Z
- modeling of the multijet background

Generate two ensembles of pseudo-experiments for the two hypotesis, and using their probability distributions, compute the log-Likelihood-Ratio (LLR):

$$LLR = -2\ln \frac{\frac{e^{-(s+b)}(s+b)^d}{d!}}{\frac{e^{-b}b^d}{d!}}$$

Using the same formalism we can set determine the upper limit (1-CLs=95%) on the SM Higgs boson production.

Marginal distributions

- EM trigger (ee), inclusive trigger (em, mm)
- $p_T^e > 15 GeV$, $p_T^{\mu} > 10$ (20) GeV
- opposite charge
- invariant mass > 15 GeV
- isolation (+separation from jets, $\Delta R > 0.1$, for μ)
- vertex within fiducial tracking region

	ee	eµ	μμ	
$\Delta\Phi(l_1, l_2)$	< 2.0rad	<2.0rad	< 2.0rad	
MET	> 20GeV	> 20GeV	> 25GeV	
MET _{Scal}	> 6 GeV	> 6 GeV	_	
$min(M_{_{ m T}})$	> 30GeV	> 20 GeV	> 20GeV	

$$M_T(l, E_T) = \sqrt{2p_T^l E_T (1 - \cos \Delta \phi(l, E_T))}$$

$$\not\!\!E_T^{\rm Sig} = \frac{\not\!\!E_T}{\sqrt{\sum_{\rm jets} \left(\Delta E^{\rm jet} \cdot \sin \theta^{\rm jet} \cdot \cos \Delta \phi \left({\rm jet}, \not\!\!E_T\right)\right)^2}}$$

NN Analysis Variables							
Object kinematics							
p_T of leading muon p_T of trailing muon	$p_T(\mu 1)$ $p_T(\mu 2)$						
sum of the transverse momenta of the leptons(zpt) number of VConf jets: sum of the momenta of VConf jets:	$ \begin{aligned} $						
minimal quality of one of the two leptons: Event Kinematics	$Q_{min}(\mu_1,\mu_2)$						
invariant mass of both leptons	$M_{\mathrm{inv}}(\mu 1, \mu 2)$						
missing transverse energy	E_T^{miss}						
minimum transverse mass	M_T^{min}						
Topological Variables							
azimuthal angle between selected muons	$\Delta\phi(\mu 1, \mu 2)$						
azimuthal angle between \mathbb{E}_{T} and the leading muon	$\Delta \phi(E_T^{miss}, \mu 1)$						
azimuthal angle between E T and the trailing muon	$\Delta \phi(E_T^{miss}, \mu 2)$						
log base 10 of the sum of the scaled isolations for the two muons							

Cutflow

TABLE I: Expected and observed event yields in each channel after preselection and at the final selection. The systematic uncertainty after fitting is shown for all samples at final selection.

	$e^{\pm}\mu^{\mp}$		e^+e^-		$\mu^+\mu^-$	
	preselection	final selection	preselection	final selection		
$Z/\gamma^* \rightarrow e^+e^-$	120	< 0.1	274886	158 ± 13	_	_
$Z/\gamma^* \to \mu^+\mu^-$	89	4.3 ± 0.3	_	_	373582	1247 ± 37
$Z/\gamma^* \rightarrow \tau^+\tau^-$	3871	7.1 ± 0.5	1441	0.7 ± 0.1	2659	12.0 ± 0.7
$tar{t}$	312	93.8 ± 8.3	159	47.0 ± 4.4	184	74.6 ± 6.8
$W + \text{jets}/\gamma$	267	112 ± 9	308	122 ± 11	236	91.5 ± 6.5
WW	455	165 ± 6	202	73.9 ± 6.4	272	107 ± 9
WZ	23.6	7.6 ± 0.2	137	11.5 ± 1.0	171	21.5 ± 2.0
ZZ	5.4	0.6 ± 0.1	117	9.3 ± 0.9	147	18.0 ± 1.8
Multijet	430	6.4 ± 2.5	1370	1.0 ± 0.1	408	53.8 ± 10.3
Signal $(m_H = 165 \text{ GeV})$	18.8	13.5 ± 1.5	11.2	7.2 ± 0.8	12.7	9.0 ± 1.0
Total background	5573	397 ± 14	278620	423 ± 19	377659	1625 ± 41
Data	5566	390	278277	421	384083	1613

Template

